- Integrated analysis of germline and somatic variants in ovarian cancer

http://www.nature.com/ncomms/2014/140122/ncomms4156/full/ncomms4156.html
:


  • Krishna L. Kanchi,
  • Kimberly J. Johnson,
  • Charles Lu,
  • Michael D. McLellan,
  • Mark D. M. Leiserson,
  • Michael C. Wendl,
  • Qunyuan Zhang,
  • Daniel C. Koboldt,
  • Mingchao Xie,
  • Cyriac Kandoth,
  • Joshua F. McMichael,
  • Matthew A. Wyczalkowski,
  • David E. Larson,
  • Heather K. Schmidt,
  • Christopher A. Miller,
  • Robert S. Fulton,
  • Paul T. Spellman,
  • Elaine R. Mardis,
  • Todd E. Druley,
  • Timothy A. Graubert
  • Nature Communications
     
    5,
     
    Article number:
     
    3156
     
    doi:10.1038/ncomms4156
    Received
     
    Accepted
     
    Published
     

    Abstract



    We report the first large-scale exome-wide analysis of the combined germline–somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1MAP3K4CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2truncations, respectively. Germline–somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.

    At a glance

    Figures

    left
    1. Overview of the integrated analysis of germline and somatic variants in 429 TCGA serous ovarian cases.
      Figure 1
    2. Germline copy-number variants in BRCA1.
      Figure 2
    3. Lolliplots showing the distribution of germline truncation variants and somatic mutations.
      Figure 3
    4. LOH analysis in tumour samples.
      Figure 4
    5. Significant pathways and subnetworks in ovarian cancer.
      Figure 5
    right

    References



    1. Howlader N.et al. (eds).SEER Cancer Statistics Review 1975–2010 (National Cancer Institute, Bethesda, MD, 2013) http://seer.cancer.gov/csr/1975_2010/ , based on November 2012 SEER data submission, posted to the SEER web site, April 2013.
    2. Weissman, S. M.Weiss, S. M. & Newlin, A. C. Genetic testing by cancer site: ovaryCancer J. 18320327 (2012).
    3. Walsh, T. et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencingProc. Natl Acad. Sci. USA 108,1803218037 (2011).
    4. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma.Nature 474609615 (2011).
    5. Dees, N. D. et al. MuSiC: Identifying mutational significance in cancer genomesGenome Res. 2215891598 (2012).
    6. Li, H. et al. The Sequence Alignment/Map format and SAMtoolsBioinformatics 25,20782079 (2009).
    7. Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencingGenome Res 22568576 (2012).
    8. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing dataGenome Res. 2012971303 (2010).
    9. Futreal, P. A. et al. A census of human cancer genesNat. Rev. Cancer 4177183 (2004).
    10. Gonzalez-Perez, A. & Lopez-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, CondelAm. J. Hum. Genet.88440449 (2011).
    11. Morgenthaler, S. & Thilly, W. G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST)Mutat. Res. 6152856(2007).
    12. Kandoth, C. et al. Integrated genomic characterization of endometrial carcinomaNature 497,6773 (2013).
    13. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinomaNature 455,10691075 (2008).
    14. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathwaysNature 45510611068 (2008).
    15. Thompson, E. R. et al. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility allelesPLoS Genet. 8,e1002894 (2012).
    16. Thomas, G. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1)Nat. Genet. 41579584 (2009).
    17. Wickramanyake, A. et al. Loss of function germline mutations in RAD51D in women with ovarian carcinomaGynecol. Oncol. 127552555 (2012).
    18. Catucci, I. et al. Germline mutations in BRIP1 and PALB2 in Jewish high cancer risk families.Fam. Cancer 11483491 (2012).
    19. Seminog, O. O. & Goldacre, M. J. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage studyBr. J. Cancer 108193198 (2013).
    20. Thol, F. et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromesJ. Clin. Oncol. 2924992506 (2011).
    21. Carbuccia, N. et al. Mutations of ASXL1 gene in myeloproliferative neoplasmsLeukemia 23,21832186 (2009).
    22. Schnittger, S. et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcomeLeukemia 278291(2013).
    23. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinomaNature 4994349 (2013).
    24. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours.Nature 4906170 (2012).
    25. Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibitionNature 486353360 (2012).
    26. Patnaik, M. M. et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomesLeukemia 27,15041510 (2013).
    27. Mian, S. A. et al. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndromeHaematologica 9810581066(2013).
    28. Metzeler, K. H. et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B studyJ. Clin. Oncol. 2913731381 (2011).
    29. Penzel, R. et al. EGFR mutation detection in NSCLC--assessment of diagnostic application and recommendations of the German Panel for Mutation Testing in NSCLCVirchows Arch.4589598 (2011).
    30. Fearnhead, N. S.Wilding, J. L. & Bodmer, W. F. Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesisBr. Med. Bull. 642743 (2002).
    31. Szabo, C.Masiello, A.Ryan, J. F. & Brody, L. C. The breast cancer information core: database design, structure, and scopeHum. Mutat. 16123131 (2000).
    32. Easton, D. F. et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genesAm. J. Hum. Genet. 81873883 (2007).
    33. National Human Genome Research Institute. Breast Cancer Information Core, An Open Access On-Line Breast Cancer Mutation Data Base, Vol 2013.http://research.nhgri.nih.gov/bic/ (accessed 16 May 2013).
    34. Offit, K. et al. Rare variants of ATM and risk for Hodgkin's disease and radiation-associated breast cancersClin. Cancer Res. 838133819 (2002).
    35. Hellebrand, H. et al. Germline mutations in the PALB2 gene are population specific and occur with low frequencies in familial breast cancerHum. Mutat. 32E2176E2188 (2011).
    36. Wang, X. D. et al. Mutations in the hedgehog pathway genes SMO and PTCH1 in human gastric tumorsPLoS One 8e54415 (2013).
    37. Jozwiak, J.Jozwiak, S.Grzela, T. & Lazarczyk, M. Positive and negative regulation of TSC2 activity and its effects on downstream effectors of the mTOR pathwayNeuromol. Med. 7,287296 (2005).
    38. Nellist, M. et al. Distinct effects of single amino-acid changes to tuberin on the function of the tuberin–hamartin complexEur. J. Hum. Genet. 135968 (2004).
    39. Rath, M. G. et al. Prevalence of germline TP53 mutations in HER2+ breast cancer patients.Breast Cancer Res. Treat. 139193198 (2013).
    40. Wendl, M. C. et al. PathScan: a tool for discerning mutational significance in groups of putative cancer genesBioinformatics 2715951602 (2011).
    41. Vandin, F.Upfal, E. & Raphael, B. J. De novo discovery of mutated driver pathways in cancerGenome Res. 22375385 (2012).
    42. Thirman, M. J. et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocationsN. Engl. J. Med. 329909914(1993).
    43. Duns, G. et al. Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinomaCancer Res. 7042874291 (2010).
    44. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types.Nature 502333339 (2013).
    45. Barroso, E. et al. FANCD2 associated with sporadic breast cancer riskCarcinogenesis 27,19301937 (2006).
    46. Seminog, O. O. & Goldacre, M. J. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage studyBr. J. Cancer 108193198 (2013).
    47. Golmard, L. et al. Germline mutation in the RAD51B gene confers predisposition to breast cancerBMC Cancer 13484 (2013).
    48. Wickramanyake, A. et al. Loss of function germline mutations in RAD51D in women with ovarian carcinomaGynecol. Oncol. 127552555 (2012).
    49. Solyom, S. et al. Screening for large genomic rearrangements in the FANCA gene reveals extensive deletion in a Finnish breast cancer familyCancer Lett. 302113118 (2011).
    50. Durocher, F. et al. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer familiesBMC Cancer 6,230 (2006).
    51. Pennington, K. P. & Swisher, E. M. Hereditary ovarian cancer: beyond the usual suspects.Gynecol. Oncol. 124347353 (2012).
    52. Rzepecka, I. K. et al. High frequency of allelic loss at the BRCA1 locus in ovarian cancers: clinicopathologic and molecular associationsCancer Genet. 20594100 (2012).
    53. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility lociNature 44710871093 (2007).
    54. Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 human genomes.Nature 4915665 (2012).
    55. Hays, J. et al. The Women's Health Initiative recruitment methods and resultsAnn. Epidemiol.13S18S77 (2003).
    56. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics 2517541760 (2009).
    57. Koboldt, D. C. et al. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencingGenome Res. 22568576 (2012).
    58. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing dataGenome Res. 2012971303 (2010).
    59. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect PredictorBioinformatics 2620692070 (2010).
    60. Thorvaldsdottir, H.Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and explorationBrief Bioinform. 14178192(2012).
    61. Chen, K. et al. PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing dataGenome Res. 17659666 (2007).
    62. Nickerson, D. A.Tobe, V. O. & Taylor, S. L. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing.Nucleic Acids Res. 2527452751 (1997).
    63. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function.Nucleic Acids Res. 3138123814 (2003).
    64. Nakken, S.Alseth, I. & Rognes, T. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genesNeuroscience14512731279 (2007).
    65. Vandin, F.Upfal, E. & Raphael, B. J. Algorithms for detecting significantly mutated pathways in cancerJ. Comput. Biol. 18507522 (2011).
    66. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutationsNat. Methods 7248249 (2010).
    67. Fokkema, I. F. et al. LOVD v.2.0: the next generation in gene variant databasesHum. Mutat.32557563 (2011).
    68. Stenson, P. D. et al. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicineHum. Genet http://www.ncbi.nlm.nih.gov/pubmed/24077912 (2013).

    Author information



    1. These authors contributed equally to this work

      • Krishna L. Kanchi, 
      • Kimberly J. Johnson & 
      • Charles Lu

    Affiliations

    1. The Genome Institute, Washington University, St. Louis, Missouri 63108, USA

      • Krishna L. Kanchi,
      •  
      • Kimberly J. Johnson,
      •  
      • Charles Lu,
      •  
      • Michael D. McLellan,
      •  
      • Michael C. Wendl,
      • Qunyuan Zhang,
      •  
      • Daniel C. Koboldt,
      •  
      • Mingchao Xie,
      •  
      • Cyriac Kandoth,
      •  
      • Joshua F. McMichael,
      •  
      • Matthew A. Wyczalkowski,
      •  
      • David E. Larson,
      •  
      • Heather K. Schmidt,
      •  
      • Christopher A. Miller,
      •  
      • Robert S. Fulton,
      • Elaine R. Mardis,
      •  
      • Richard K. Wilson &
      •  
      • Li Ding
    2. Brown School, Washington University, St. Louis, Missouri 63130, USA

      • Kimberly J. Johnson
    3. Oregon Health and Science University, Portland, Oregon 97239, USA

      • Kimberly J. Johnson &
      •  
      • Paul T. Spellman
    4. Department of Computer Science, Brown University, Providence, Rhode Island 02912, USA

      • Mark D. M. Leiserson &
      •  
      • Benjamin J. Raphael
    5. Department of Genetics, Washington University, St. Louis, Missouri 63108, USA

      • Michael C. Wendl,
      •  
      • Qunyuan Zhang,
      •  
      • David E. Larson,
      •  
      • Robert S. Fulton,
      •  
      • Elaine R. Mardis,
      •  
      • Todd E. Druley,
      •  
      • Richard K. Wilson &
      •  
      • Li Ding
    6. Department of Mathematics, Washington University, St. Louis, Missouri 63108, USA

      • Michael C. Wendl
    7. Siteman Cancer Center, Washington University, St. Louis, Missouri 63108, USA

      • Elaine R. Mardis,
      •  
      • Timothy A. Graubert,
      •  
      • Richard K. Wilson &
      •  
      • Li Ding
    8. Department of Pediatrics, Washington University, St. Louis, Missouri 63108, USA

      • Todd E. Druley
    9. Department of Medicine, Washington University, St. Louis, Missouri 63108, USA

      • Timothy A. Graubert &
      •  
      • Li Ding
    10. The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA

      • Paul J. Goodfellow

    Contributions

    L.D. and R.K.W. jointly supervised research. L.D., K.L.K., K.J.J., C.L., M.D.M., M.D.M.L., C.K., M.A.W., J.F.M., D.C.K., C.A.M., P.T.S. and B.J.R. analysed the data. M.C.W. and Q.Z. performed statistical analysis. K.L.K., C.L., J.F.M., M.D.M., M.A.W. and L.D. prepared figures and tables. R.S.F. performed experiments. E.R.M. and D.E.L. contributed analysis tools. L.D., K.J.J., T.A.G., P.J.G., T.E.D. and B.J.R conceived and designed the experiments. L.D. and K.J.J. wrote the manuscript. K.L.K., K.J.J., C.L. and M.D.M. contributed equally but due to restrictions on the number of first authors only K.L.K., K.J.J. and C.L. are denoted as such.

    Competing financial interests

    The authors declare no competing financial interests.

    Corresponding author

    Correspondence to: 

    Supplementary information



    PDF files

    1. Supplementary Figures and Tables (660 KB)
      Supplementary Figures S1-S5 and Supplementary Tables S1-S5

    Excel files

    1. Supplementary Data 1 (39 KB)
      Clinical Information For 557 WHI Cases
    2. Supplementary Data 2 (21 KB)
      429 TCGA Ovarian Cases Data Types and Clinical Information
    3. Supplementary Data 3 (3,642 KB)
      Somatic Mutations in 429 TCGA Ovarian cases
    4. Supplementary Data 4 (466 KB)
      All 3,635 high confidence, rare (<1% population variant allele frequency) germline truncations including 115 validated germline truncations in cancer
    5. Supplementary Data 5 (9 KB)
      Validated Truncation Variants in Cancer Genes
    6. Supplementary Data 6 (2,691 KB)
      All 22,953 missense variants (<1% population variant allele frequency), predicted to be functional by Condel in 387 Caucasians
    7. Supplementary Data 7 (575 KB)
      All truncation variants (<1% population variant allele frequency), in 557 Caucasians
    8. Supplementary Data 8 (2,434 KB)
      All 30335 missense variants (<1% population variant allele frequency), predicted to be functional by Condel in 557 Caucasians
    9. Supplementary Data 9 (331 KB)
      Burden Analysis results for the Missense variants
    10. Supplementary Data 10 (16 KB)
      Burden Analysis Results for the Missense and Truncation Variants in Cancer Genes
    11. Supplementary Data 11 (13 KB)
      Germline truncation and missense within close proximity (5 amino acid) to COSMIC/OMIM variants
    12. Supplementary Data 12 (67 KB)
      Germline truncations display LOH in corresponding tumor
    13. Supplementary Data 13 (14 KB)
      Germline missense variants in cancer genes display LOH in corresponding tumor
    14. Supplementary Data 14 (21 KB)
      High confidence, functional truncation and missense variants identified by integrated approaches
    15. Supplementary Data 15 (21 KB)
      Significant pathways identified by PathScan using germline truncations and somatic mutations
    16. Supplementary Data 16 (8 KB)
      Four significant subnetworks identified by HotNet using germline truncations and somatic mutations (P = 0.17)
    17. Supplementary Data 17 (17 KB)
      672 cancer genes
    18. Supplementary Data 18 (36 KB)
      Validated Missense Variants using 11 Whole Genome Sequencing BAMs
    19. Supplementary Data 19 (12 KB)
      Primers for TCGA Germline Validation using 3730 sequencing platform
    20. Supplementary Data 20 (49 KB)
      Primers for TCGA Germline Validation using miseq

    - Proefschrift Marie Braem: Hoe eierstokkanker ontstaat

    In haar proefschrift zocht Marie Braem onder meer naar leefstijl-gerelateerde en genetische risicofactoren voor eierstokkanker. Zij toont een beschermend effect aan van zwangerschappen, pilgebruik, het verwijderen van de baarmoeder en een jongere leeftijd bij de overgang.
    Het risico op eierstokkanker blijkt hoger bij vrouwen met een langere menstruele levensduur en bij vrouwen die meer dan drie miskramen hebben gehad. De resultaten van het proefschrift laten zien dat eierstokkanker wordt beïnvloed door een zeer complex samenspel van leefstijl en genetische variatie.
    Datum en tijd:7/1/2014 10:30
    Locatie:Academiegebouw, Domplein 29, Utrecht
    Promovendus:Marie Braem
    Faculteit:Faculteit Geneeskunde
    Proefschrift:Ovarian Cancer: The Interplay of Lifestyle and Genes
    Promotor 1:Prof. dr. Petra Peeters
    Copromotor 1:Dr. Charlotte Onland-Moret
    Copromotor 2:Dr. Leo Schouten

    - Recurrent ovarian cancers respond to cancer vaccine after 'reprogramming' with decitabine

    http://medicalxpress.com/news/2014-01-recurrent-ovarian-cancers-cancer-vaccine.html :


    Treatment with the drug decitabine prior to administration of chemotherapy and a cancer vaccine yielded clinical benefit for women with recurrent ovarian cancer, suggesting that this combinatorial chemoimmunotherapy may provide a new treatment option for patients with this disease, according to a study published in
     Cancer Immunology Research, a journal of the American Association for Cancer Research.

    A prerequisite for a patient's immune system to recognize and attack his or her tumor is the presence of high levels of a protein not normally found in the patient's healthy cells. Proteins with this profile are called tumor antigens and can be good targets for anticancer vaccines.
    "NY-ESO-1 is one of the few tumor antigens that have restricted expression in normal tissues but become aberrantly expressed in epithelial ovarian cancers and other solid tumors, so we focused on this antigen as the lead candidate for development of 
    immunotherapy," said Kunle Odunsi, M.D., Ph.D., principal investigator of the study, the M. Steven Piver professor and chair of the Department of Gynecologic Oncology, and director of the Center for Immunotherapy at Roswell Park Cancer Institute in Buffalo, N.Y. "However, we observed that this antigen is not uniformly expressed by epithelial ovarian cancers, so our goal was to force the expression of NY-ESO-1 on  cells in order to allow the immune system to recognize and attack them.
    "Expression of NY-ESO-1 is regulated by an epigenetic process called DNA methylation. Therefore, we tested the hypothesis that epigenetic reprogramming of NY-ESO-1 using the demethylating agent decitabine will augment vaccine-induced immunity," he added. "Although clinical results were not a focus of this phase I trial, we saw evidence of clinical benefit in up to 60 percent of the patients with chemotherapy-resistant tumors. The combination of a demethylating agent, chemotherapy, and cancer vaccine may have enabled this remarkable effect."

    Odunsi and colleagues conducted a phase I dose-escalation trial of decitabine, to which they recruited 12 women with 
     that had not responded to multiple lines of chemotherapy, with an estimated progression-free survival time of three months. All patients received decitabine on day one, the chemotherapy drug doxorubicin on day eight, and the  (NY-ESO-1 protein with Montanide and GM-CSF) on day 15.

    In preclinical analysis reported as part of this study, the investigators established the best sequence of drug administration: decitabine was effective only when administered before chemotherapy, and it was ineffective if given after chemotherapy; vaccine administration was the last step.
    The clinical trial participants were randomly assigned to receive a low, middle, or high dose of decitabine.


    Of the 10 patients evaluable for clinical response, five had stable disease for up to 7.8 months, and one had a partial response with disease remission that lasted 5.8 months. All patients from the low- and middle-dose cohorts of decitabine showed clinical benefit, whereas one-third of the patients who received the high dose showed benefit. These data suggest that lower doses of decitabine are associated with improved clinical response using this regimen. The treatment was well tolerated, and adverse events included hematologic side effects that were clinically manageable, according to Odunsi.
    "One of the most remarkable results in terms of immune responses was that we were able to evoke what we call 'antigen spreading,'" he said. "Although we immunized against a single target [NY-ES0-1], we analyzed and found that we were able to induce immune responses against three other antigens, against which we did not immunize.
    "We propose that patients should actively seek these kinds of combination therapies. Even though the majority of these types of therapies are experimental at this point, there is enough scientific and clinical evidence to indicate that they are likely to be beneficial," Odunsi added.
    To this end, Odunsi and Adam R. Karpf, Ph.D., a co-principal investigator of the study and associate professor at the Eppley Institute and member of the Fred and Pamela Buffett Cancer Center in the University of Nebraska Medical Center in Omaha, are currently planning a phase II trial at Roswell Park Cancer Institute and the Fred and Pamela Buffett Cancer Center to test whether this treatment approach lengthens progression-free survival in patients with ovarian cancer.
    This study was funded by the Ovarian Cancer Research Fund, the Roswell Park Alliance Foundation, a Cancer Vaccine Collaborative Grant, the Anna Maria Kellen Clinical Investigator Award, the National Cancer Institute, and Eisai Pharmaceuticals. Odunsi has declared no conflicts of interest.

    - Stand van zaken

    31 december: Te erg voor woorden
    Chirurg Aalbers heeft een ski-ongeluk gehad. Mijn operatie, die vorige week eindelijk definitief was ingepland voor 10 januari, kan 
    niet doorgaan en lijkt drie (!) weken te worden uitgesteld. Want er is geen vervangend chirurg aanwezig binnen het AVL (...) Wordt vervolgd. Fijne Jaarwisseling! 

    12 december: 
    In afwachting van operatiedatum in AVL
    Nadere info volgt. Want bij het AVL blijk ik noch ingepland te staan in december, noch in januari...Leuven blijkt bij opgave van de kostenraming de operatie toch NIET met moleculaire therapie te combineren en is daarmee vervallen als optie.

    8 december: eerst operatie of eerst chemotherapie?

    Met deze vraag hebben Rutger en ik ons sinds de recidief-diagnose op 3 oktober 2013 intensief bezig gehouden. Sindsdien een hectische periode met veel ziekenhuisbezoeken, medische onderzoeken, gesprekken en desktopresearch.
    AVL, amerikaanse studies, second opinions van ErasmusMC, Radboudziekenhuis en UZ Leuven kwamen met het antwoord: ja, een operatie om de twee tumoren op de milt en de milt zelf te verwijderen is wenselijk en technisch haalbaar. Mits er geen verdere uitzaaiingen in de buikholte zitten.
    Waar? In het AVL hoogstwaarschijnlijk. 

    - 'Iedere patiënt met eierstokkanker anders'

    Uit: de Telegraaf 13.11.2013:

    UTRECHT - 
    Er zijn grote genetische verschillen tussen primaire tumoren aan de eierstokken en daaropvolgende uitzaaiingen. Deze nieuwe inzichten leiden wellicht tot een verbeterde behandeling van eierstokkanker.
      Foto: ANP
      Dit blijkt uit onderzoek van het UMC Utrecht en Life Technologies Corporation in Carlsbad CA (USA). De bevindingen zijn vandaag online gepubliceerd in het vakblad Genome Research.
      Eierstokkanker is een moeilijk te behandelen vorm van kanker en wordt ook wel de silent lady killer genoemd. Bij de meeste patiënten komt de ziekte terug na operatieve verwijdering van de tumor en chemotherapie. Om de groei van eierstokkanker beter te kunnen begrijpen bekeken de onderzoekers het DNA van tientallen stukjes (primaire- en uitgezaaide) tumor afkomstig van drie vrouwen met een vergevorderd stadium van eierstokkanker. Van alle stukjes tumor werd het DNA vergeleken met DNA uit gezond weefsel. Hieruit bleek dat vrijwel elk stukje eierstoktumor een unieke set van genetische veranderingen heeft.
      Verschilllen
      “Eierstokkanker wordt meestal pas in een laat stadium ontdekt, als de tumor al groot is en er in de buikholte uitzaaiingen zijn,” aldus dr. Wigard Kloosterman, een van de hoofdonderzoekers van de studie en verbonden aan het UMC Utrecht. “De extreme verschillen die we hebben gevonden tussen de tumormonsters van elke individuele patiënt zou een mogelijke verklaring kunnen zijn waarom deze vorm van kanker zo moeilijk te behandelen is.”
      De groei van de tumor was bij elk van de drie patiënten anders. Bij één patiënt kwamen er stapsgewijs steeds meer veranderingen bij. Bij twee andere patiënten ontstonden er al in een vroeg stadium twee verschillende groepen van uitzaaiingen met ieder unieke eigenschappen.
      Bij de huidige behandeling van eierstokkanker wordt zoveel mogelijk tumormateriaal weggesneden, waarna chemotherapie volgt. In principe krijgt elke patiënt de zelfde standaardbehandeling. De studie van het UMC Utrecht laat zien dat een grondige genetische analyse van eierstokkanker de basis kan vormen voor een meer verfijnde therapie met mogelijk een grotere succeskans.